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A good deal is known by now on the so-called jellium model of the homogeneous electron
liquid. However, much of the quantitative progress at experimentally realizable densities
has come from quantal computer simulation. Therefore, we here consider a homogeneous
Fermion liquid with ‘artificial’ repulsive interaction �/(rij)

2 between Fermions i and j at
separation rij. We discuss first of all the way the static structure function S(q), essentially the
Fourier transform of the pair correlation function, is changed because of non-zero � from the
‘Fermi hole’ form due entirely to Pauli principle effects between parallel spin Fermions. Unlike
jellium with e2/rij repulsive interactions, S(q) is proportional to q at long wavelengths, whereas
the plasmon in jellium annulls the q term and S(q) is quadratic in q as q tends to zero. However
for �/(rij)

2 interactions, the coefficient of q appearing in the Fermi hole structure factor,
is renormalized by particle repulsions. Then some discussion is given of Fermion quasiparticle
lifetimes � as the Fermi surface is approached. Arguments are presented that ��1 is proportional
to jE�EFj as E tends to the Fermi energy. This is already interesting, in fact, in connection
with the jellium model and therefore an approximate analytic form of � is finally derived.

Keywords: Homogeneous Fermion liquids; Structure factor; Quasiparticle lifetime

1. Introduction

Electron liquids in monovalent species as Na and K are usefully discussed in relation

to the so-called jellium model going back to the early work of Sommerfeld on the theory

of metals. Because of the weakness of the pseudopotentials in Na and K in particular,

the conduction electrons are relatively uniform throughout most of the unit cell of these
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body-centered-cubic lattices. Thus the jellium model, with its uniform density
� described conventionally in terms of the interelectronic spacing rs through

� ¼
3

4�r3s
ð1Þ

is immediately valuable in getting the essence of the behaviour of the interacting
conduction electron liquid in the above two alkali metals. However, these are relatively
low density metals, with rs at ambient pressure �3–4a0 where a0 is the Bohr radius
�h2=me2. While some important analytic progress is possible for rs� a0 [1,2] for real
metallic densities in the range 25rs/a055.5 quantum Monte Carlo simulations
pionered by Ceperley and Alder [3] have yielded to date the definitive quantitative
predictions of the jellium model.

Passing from this model, appropriate in the thermodynamical limit, to really small
systems, it was pointed out in early work that replacing Coulomb potential energy e2/rij
allowed analytical progress to be made [4]; see recent work by Capuzzi et al. [5].
These latter authors have examined the interplay between harmonic confinement and
repulsive potential energy �/(rij)

2, with focus on the formation of a Wigner molecule in
an artificial two-electron spin-compensated atomic ground state.

Here, we shall, with the above motivation plus later reasons (see below) connected
with Fermion quasiparticle lifetimes as the Fermi surface is approached, study a
homogeneous Fermion liquid with inverse square law repulsions. Let us begin with the
static structure factor S(q).

2. Static structure factor S(q) for homogeneous Fermion liquid

with k/(rij)
2 repulsive interactions

Let us start the quantitative discussion by recalling the Pauli Principle effect between
spin 1/2 Fermions in a spin-compensated uniform Fermion liquid. Then the ground-
state wave function is a single Slater determinant formed from plane waves ��1/2eikr

(� being the normalization volume) where k vectors all lie within the (completely filled)
Fermi sphere of radius kF (kFrs¼ (9�/4)1/3), related to the Fermi energy EF by

EF ¼
�h2k2F
2m

: ð2Þ

Then (see for example the book of Jones and March [6]), the Fermi hole (FH)
pair function gFH(r), with corresponding structure factor SFH(q), is given by the closed
analytic form

SFHðqÞ ¼ a1qþ a3q
3, ð3Þ

for q� 2kF. For q42kF one has SFH(q)¼ 1. In equation (3) a1¼ 3/4kF and
a3 ¼ �1=16k3F. If we choose to define a corresponding ‘direct’ correlation function
c(r), well known in classical statistical mechanics (see, for instance the book by
Ishihara [7]) by

hðrÞ ¼ gðrÞ � 1 ¼ cðrÞ þ �

Z
hðjr� r0jÞcðr0Þ dr0, ð4Þ
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then the Fourier transform, say ~cðqÞ, of c(r) is immediately given by

~cðqÞ ¼
SðqÞ � 1

SðqÞ
: ð5Þ

Inserting the Fermi hole result, equation (3), into equation (5) we immediately find

~cFHðq � 2kFÞ ¼ 1�
1

a1qþ a2q3
, ð6Þ

with ~cFHðq > 2kFÞ ¼ 0. Hence the r-space form is obtained by quadrature to read

cFHðrÞ ¼
1

8�3�

Z 2kF

0

1�
1

a1qþ a2q3

� �
sinðqrÞ

qr
4�q2dq: ð7Þ

What is important for present purposes, beyond the complete behaviour of cFH(r),
is its long-range form. This is dominated by the small q behaviour in equation (7),

the integrand evidently tending to �1/a1q as q! 0. This in turn, by Fourier transform

(see book by Lighthill [8]) yields for the r!1 asymptotic limit:

cFHðrÞ ¼ �
2

k2Fr
2
: ð8Þ

In fact, the complete evaluation of cFH(r) can be achieved, and is set out in
appendix A. Since the full analytic form given there is somewhat lengthy, we note that

throughout the entire range of integration in equation (7) embracing the diameter of the

Fermi sphere, the term a2q
3 is fairly small compared with a1q. The integration is readily

completed if we therefore neglect the term a2q
3, the result being

cFHðrÞ ¼
1

r

3

2k3F

sinð2kFrÞ � 2kFr cosð2kFr

r2
�
4kF
3

1

r
½1� cosð2kFrÞ�

� �
: ð9Þ

Following Lighthill’s account [8], the oscillating terms involving cos(2kFr) and sin(2kFr)
arise from the non-analytic behaviour of ~cFHðqÞ at q¼ 2kF, whereas the long-range r

�2

term in equation (8) comes from the non-analyticity at q¼ 0. We will return to the form
(8) below after including the effect of the interparticle repulsion energy �/(rij)

2.

A. Beyond the Fermi hole due to repulsive potential energy k/(rij)
2

We now enquire as to the effect on the result in equation (8) of ‘switching’ on the

repulsive interactions �/(rij)
2 between the Fermions in the uniform Fermi liquid.

To see this, we proceed intuitively by way of classical statistical mechanics. In the
early work of Johnson and March [9] and Johnson et al. [10] on pair interactions

between ions in liquid metals (see also Reatto [11]), it was pointed out that provided the

ions were classical and in an assembly in equilibrium at temperature T, the long-range

(r!1) behaviour of c(r) was given by

cðrÞ ¼ �
�ðrÞ

kBT
, ð10Þ
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where �(r) is the pair potential. For the ground-state of jellium, kBT, measuring the
thermal energy corresponding to temperature T, is to be replaced by the zero-point
energy �h!p=2 of the plasmon, the frequency !p being given by

!p ¼
4��e2

m

� �1=2

: ð11Þ

Hence, by analogy with equation (10), we propose to write the asymptotic form say
of c�(r) as r!1 as

c�ðrÞ ¼ �
�

r2Echar
, ð12Þ

where Echar is a characteristic energy of the inverse power law model. Fourier
transformation of the large r limit then gives, as q! 0

~c�ðqÞ ¼
�� known constant

q
: ð13Þ

But from equation (6) as q! 0, ~cFHðqÞ ! �1=a1q, and we see that the interaction
between the Fermions ‘renormalizes’ the coefficient of the q term in SFH(q) but
does not remove it, in marked contrast to jellium where SjelliumðqÞ ¼

1
2 �hð4��me2Þ�1=2q2

at small q the coefficient of q2 evidently being determined by the plasma frequency
of equation (11).

We show in appendix B how appeal to the work of Gaskell [12] shows that it is
plausible to write

~cðqÞ ¼ ~cFHðqÞ þ ��ðqÞ, ð14Þ

where, to first-order in �, � is independent of �. We have argued above that �(q)/ q�1

as q tends to zero [compare equation (13)].

B. Quasi-particle lifetime in presence of k/(rij)
2 repulsive interaction

Having discussed the static structure factor S(q), we turn now to examine, of course
approximately, the form of quasiparticle lifetime � to be expected when one ‘switches
on’ the repulsive inverse square interaction. We take as starting point the study
of Galitskii [13,14].

As background, let us first note that, in many cases one can consider the
excited states of a system of interacting Fermi particles as a gas of elementary
excitations – quasiparticles. Of course, a description of a system by means of
quasiparticles is exact only in the case of an ideal gas. If there is interaction between the
particles, the excited states of the ‘Fermi type’ do not represent the exact stationary
states of the systems. This leads to the damping of the quasiparticles. The decay
is actually an exciting field [15], due to developments in different spectroscopies.

For a weakly non-ideal Fermi gas with repulsive, short-range interparticle
interactions a second-order treatment for the damping was performed by
Galitskii [13]. An essential component of his approach is the proper treatment of
kinematics in (k,!) variables. He used the imaginary part of the density-density
response function [�0 (k,!)] of an ideal Fermi system to characterize physically allowed,
real transitions [16].
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Considering these transitions, for an added fermion with energy E�EF one can [17]
write (in Hartree atomic units) for the inverse lifetime the second-order expression

1

�
¼

1

2�2

1ffiffiffiffiffiffi
2E

p

Z jE�EFj

0

d!

Z kþ

k�
dk kjVðkÞj2Im�0ðk,!Þ, ð15Þ

in which k� are determined by the energy-momentum conservation law, together
with the constraints codified in the density of excitations via the Im �0(k, !) function.

In his paper of applying methods of quantum field theory, Galitskii used a simple
contact (V¼ 4�f0) interaction to equation (15) and obtained

1

�
¼

k4F
�
f 20

8

15
ffiffiffi
x

p �ð2� xÞð2� xÞ5=2 þ
5x� 7

2

� �
, ð16Þ

where x¼E/EF is a shorthand. Notice, that for the physically most important,
!max¼ |E�EF|�EF, limit one gets the usual Fermi-liquid form by expansion in
equation (16)

1

�
¼

4

�
f 20ðE� EFÞ

2: ð17Þ

With our weakly singular [V(k)¼ 2�2�/k] interaction in equation (15), a straight-
forward calculation results in the following expression

1

�
¼ ��2

4EF

3
ffiffiffi
x

p ½I1ðxÞ � I2ðxÞ�, ð18Þ

to which the I1(x) and I2(x) functions are given by

I1ðxÞ ¼ lnðx� 1Þ þ
8

3
� 2 ln 2

� �� �
, ð19Þ

I2ðxÞ ¼ �ð2� xÞ
2

3
ð2� xÞ3=2 þ 2ð2� xÞ1=2 þ ln

ffiffiffiffiffiffiffiffiffiffiffi
2� x

p
� 1ffiffiffiffiffiffiffiffiffiffiffi

2� x
p

þ 1

 !" #
: ð20Þ

Finally, for the !max¼ |E�EF|�EF low-energy limit one gets, by a similar limiting
process as the one behind of equation (17), the simple

1

�
¼ ��2jE� EFj, ð21Þ

regular form for the inverse-lifetime of a prepared state with energy E close to EF.
A more direct determination of the low-energy limiting forms in equation (17) and
equation (21) can be based on equation (15) with Im�0ðk,!Þ ¼ !=2�k and
k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEF þ !Þ

p
� kF.

3. Summary and proposed future directions

We have studied here the effect of inverse square law repulsive interparticle potential
energy �/(rij)

2 on a homogeneous Fermion liquid. With the unperturbed structure factor
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taken as the Fermi hole form SFH(q) given in equation (3), we have first evaluated the
corresponding direct correlation function cFH(r), the Fourier transform of ~cFHðqÞ which
we have chosen to define through the ‘classical’ form (5), when S(q) is taken equal to the
known SFH(q). The form of cFH(r) in equation (9) is approximate but already useful
in showing how the two singularities in ~cFHðqÞ, at q¼ 0 and q¼ 2kF, separately
contribute to the asymptotic large r form of cFH(r). At sufficient large r, the dominant
contribution comes from q near to zero and is displayed in equation (8). Classical liquid
analogy suggests that ‘switching on’ the interaction �/(rij)

2 contributes to the q�1 term
in ~cðqÞ as q! 0, as displayed in equation (13), and also in its r-space equivalent
in equation (12).

Turning to low-energy dynamics, we have briefly then estimated the quasiparticle
lifetime � assuming Galitskii’s formula [13] as starting point, to treat the inter-
particle interaction �/(rij)

2. The full expression for the lifetime � is displayed in
equation (15), and its simple limiting form as the Fermi energy EF is approached
is � � jE� EFj

�1.
As to future directions, it would be interesting to explore quantitatively the

precise form of the characteristic energy entering equation (12), which we except to be
revealed by treating the broken symmetry state in which the repulsive interparticle
interactions �/(rij)

2 eventually drive the Fermions into localized states, to be
compared with the Wigner electron crystal induced in jellium at low densities, with
rs� 100 a0 [3,18].
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Appendices

A. Complete evaluation of equation (7) for cFH(r)

As we pointed out in the main text, the ‘direct’ correlation function c(r) has a compact
form with the Fermi hole input. The result is as follows

cFHðrÞ ¼
1

r

3

2k3F

sinð2kFrÞ � 2kFr cosð2kFrÞ

r2
�
4kF
3

1

r
Iðr,kFÞ

� �
, ð22Þ

to which the Iðr, kFÞ ¼ I1ðr, kFÞ � I2ðr, kFÞ function is given via the expressions

I1ðr, kFÞ ¼ v sinðvÞ½ciðvÞ � ciðu� vÞ � ciðuþ vÞ�, ð23Þ

I2ðr, kFÞ ¼ v cosðvÞ½siðvÞ þ siðu� vÞ � siðuþ vÞ�: ð24Þ

In these expressions the shorthands of u¼ 2kFr and v ¼
ffiffiffi
3

p
u are used, and the si( y) and

ci( y) functions are defined by as usual

sið yÞ ¼

Z y

o

dt
sinðtÞ

t
, ð25Þ

cið yÞ ¼ �

Z 1

y

dt
cosðtÞ

t
: ð26Þ

B. Density fluctuation qk and a possible variational ground-state

wave function for k/(rij)
2 interactions

To include interactions in a homogeneous Fermion gas we follow Gaskell [12] by
writting

� ¼ D exp �
X
k

dðkÞ�k�
	
k

" #
, ð27Þ

where �k denote the Fourier components of the density:

�k ¼
XN
i¼1

expð�ikriÞ, ð28Þ

in which ri denote electronic positions. For the homogeneous electron liquid, Gaskell
then determined d(k) variationally. For small rs of the jellium ( j) and for long
wavelengths

djðkÞ �
k2Fr

1=2
s

k2
1

2

4

3�

4

9�

� �1=3
" #1=2

: ð29Þ

Homogeneous Fermi liquid 577

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
3
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



Returning to the ideal Fermi hole briefly let us rewrite the pair function gFH(r) as

gFHðxÞ � 1 ¼ �
3

2

Z 1

0

d� �2j0ð�xÞ½1� SFHð�Þ�, ð30Þ

where �¼ k/kF and x¼ kFr.
Then the pair function gj(r) discussed briefly in the main text has, for small rs, the

following approximate form in terms of the direct correlation function

gjðxÞ � 1 ¼ �
3

2

Z 1

0

d� �2j0ð�xÞ 1�
1

1� cFHð�Þ þ 4djðrs,�Þ

� �
, ð31Þ

Motivated partly by the 1� cFHð� ! 0Þ ¼ 4=3� behaviour, it is tempting to try the
ansatz that, for the model with which the present article is concerned, to first-order in �:

d�ðkÞ � constant
�

�
, ð32Þ

by attributing in equation (29) the k�2 term as resulting from the Fourier transform
of the Coulomb interaction to be therefore replaced by 2�2�/k, the Fourier transform
of �/(rij)

2.
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